
EX.NO.1. PROGRAMS FOR BASIC ARITHMETIC AND LOGICAL OPERATIONS

(USING 8086)
AIM:

To write an assembly language program to perform arithmetic operations using 8086

Microprocessor.

ALGORITHM:-

a) Addition:-
(i) Start the process
(ii) Initialize the count value
(iii) Get the two data.
(iv) Add the two data values
(v) If carry exists increment the count value.
(vi) Store the result.
(vii) Stop the process.

PROGRAM

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV CL , 00 C6, C1, 00 ; Initialize the count

 1003 MOV AX, 0F0C C7, C0, 0C, 0F ; Move1
st

 data to accumulator

 1007 MOV BX, 111F C7, C3, 1F, 11 ; Move2
nd

 data to register

 100B ADD BX, AX 01, C3 ; Add the two data

 100D JNC LOOP1 73, 02 ; Jump on no carry

 100F INC CL FE, C1 ; Increment the counter

LOOP1: 1011 MOV [1100], BX 89,1E, 00, 11 ; Store the result

 1015 MOV [1102], CL 88, 0E, 02,11 ; Store the carry

 1019 HLT F4 ; Stop the process

OUTPUT

16 – BIT ADDITION

Address Output

1100 2B

1101 20

1102 00

1

16 BIT ADDITION

Start

Initialize count as zero for carry

Get the two data

Add the datas

If No
Carry

Yes

Increment the count

Store the result & carry

Stop

2

1 B) 16 BIT SUBTRACTION

ALGORITHM:-

(i) Start the process

(ii) Initialize the count value

(iii) Get the two data and subtract it.

(iv) If carry exists, get the 2‟s complement of the value.

(v) Store the result and carry value.

(vi) Stop the process.

PROGRAM

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV CL, 00 C6, C1, 00 ; Initialize the count

 1003 MOV AX, [1100] 8B, 06, 00, 11 ; Move1
st

 data to accumulator

 1007 MOV BX, [1102] 8B, 1E, 02, 11 ; Move 2
nd

 data to „B‟ register

 100B SUB BX, AX 29, C3 ; Subtract the two datas

 100D JNC LOOP1 73, 05 ; Jump on no carry

 100F INC CL FE, C1 ; Increment the counter

 1011 NOT BX F7, D3 ; Get the complement value

 1013 INC BX 43 ; Increment the value

LOOP1: 1014 MOV [1104], BX 89, 1E, 04, 11 ; Store the result

 1018 MOV [1106], CL 88, 0E, 06, 11 ; Store the carry

 101C HLT F4 ; Stop the process

OUTPUT

16 – BIT SUBTRACTION

 Address Input Address Output

 1100 76 1104 31

 1101 86 1105 65

 1102 45 1106 00

 1103 81

 3

FLOWCHART:-

Subtraction:-

Start

Initialize count as zero for borrow

Get the two data

Subtract the datas

If

Carry
exists

No

Yes

Take 2‟s complement

Store the result & carry

Stop

4

1.C) 16 BIT MULTIPLICATION

ALGORITHM:-

(i) Start the process

(ii) Get the two values

(iii) Multiply the two values.

(iv) Store the result and overflow

(v) Stop the process.

PROGRAM

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV SI, 1100 C7, C6,00, 11 ; Move the source index

 1004 MOV AX, [SI] 8B, 04 value

 1006 MOV BX, [SI + 02] 8B, 54, 02 ; Move the first data

 1009 MUL BX F7, E3 ; Get the second data

 100B MOV [SI + 04], 89, 44, 04 ; Multiply the data

 100E MOV AX 89, 54, 0b ; Store the result

 1011 HLT [SI + 06], F4 ; Store the over flow

 DX ; Stop the process

INPUT

Address Input

1100 11

1101 11

1102 00

1103 11

OUTPUT

Address Output

1104 00

1105 21

1106 22

1107 01

5

FLOW CHART:-

Multiplication:-

Start

Get the two values

Multiply the values

Store the result & overflow

Stop

6

D) 16 BIT DIVISION

AIM:

To perform division of a 32 bit number by a 16 bit number and store the quotient and
remainder in memory

ALGORITHM:-

(i) Start the process

(ii) Get the two values

(iii) Initialize „DX‟ register as zero

(iv) Divide the values

(v) Store the quotient and remainder

(vi) Stop the process.

FLOWCHART:

7

D) 16 BIT DIVISION

PROGRAM

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV SI, 1100 C7, C6,00, 11 ; Get the source index value

 1004 MOV Ax, [SI] 8B, 04 ; Get the first data

 1006 MOV DX, [SI + 8B, 54, 02 ; Initialize „DX‟ register

 1009 MOV 02] 8B, 5C, 04 value

 100C DIV BX, [SI + 04] F7, E3 ; Get the dividend value

 100E MOV BX 89, 44, 06 ; Divide the value

 1011 MOV [SI + 06], 89, 54, 08 ; Move the quotient

 1014 HLT AX F4 ; Move the remainder & store

 [SI + 08], ; Stop the process

 DX

16 – BIT DIVISIION

Address Input

1100 42 (DIVIDEND)

1101 24

1102 00

1103 00

1104 02(DIVISOR)

1105 00

RESULT:-

Address Output

1106 21(QUOTIENT)

1107 12

1108 00(REMAINDER)

1109 00

Thus the assembly language program for 16 Bit Arithmetic and Logical operations has been done

and verified.

8

VIVA QUES TIONS AND ANSWERS

1. What is a Microprocessor?
Microprocessor is a CPU fabricated on a single chip, program-controlled device, which fetches

the instructions from memory, decodes and executes the instructions.

2. What is Instruction Set?
 It is the set of the instructions that the Microprocessor can execute.

3. What is Clock Speed?

Clock speed is measured in the MHz and it determines that how many instructions a processor
can processed. The speed of the microprocessor is measured in the MHz or GHz.

4. What are the features of Intel 8086?

 Features:
 Released by Intel in 1978
Produced from 1978 to 1990s

A 16-bit microprocessor chip.
 Max. CPU clock rate:5 MHz to 10 MHz

 Instruction set: x86-16

5. What are the flags in 8086?

In 8086 carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace flag,
Interrupt flag, Direction flag, and Sign flag.

6. What is assembly language?
 The language in which the mnemonics (short -hand form of instructions) are used to write a

program is called assembly language. The manufacturers of microprocessor give the mnemonics.
7. What are machine language and assembly language programs?

 The software developed using 1's and 0's are called machine language, programs. The software
developed using mnemonics are called assembly language programs.

8. What is the drawback in machine language and assembly language, programs?

 The machine language and assembly language programs are machine dependent. The programs
developed using these languages for a particular machine cannot be directly run on another

machine.
9. Define bit, byte and word.
 A digit of the binary number or code is called bit. Also, the bit is the fundamental storage unit of

computer memory.
 The 8-bit (8-digit) binary number or code is called byte and 16-bit binary number or code is

called word. (Some microprocessor manufactures refer the basic data size operated by the
processor as word).

10. What is a bus?

 Bus is a group of conducting lines that carries data, address and control signals.

9

2. PROGRAM FOR SEARCHING AND SORTING OF AN ARRAY USING 8086

2a. SORTING AN ARRAY IN ASCENDING ORDER

AIM:-

Write an assembly language program to sort an array of data in ascending order.

ALGORITHM:-

1. Set SI register as pointer for array.

2. Set CL register as count for N – 1 repetitions.

3. Initialize array pointer.

4. Set CH as count for N – 1 comparisons.

5. Increment the array pointer.

6. Get an element of array AL register.

7. Increment the array pointer.

8. Compare the next element of the array with AL.

9. Checks carry flag. If carry flag is set then go to step -12, otherwise go to next step.

10. Exchange the content of memory pointed by SI and the content of previous memory location

11. Decrement the count for comparisons (CH register).

12. Check zero flag. If zero flag is reset then go to step-6, otherwise go to next step.

13. Decrement the count for repetitions (CL register).

14. Check zero flag. If zero flag is reset then go to step-3, otherwise go to next step.

15. Stop.

10

SORTING IN ASCENDING ORDER

Start

Load the address of the array in SI

register

Load the count in CL register

and decrement by one

2

Load the address of array in SI

register

 Load the count in CH register and

 decrement by one 1

Increment the array pointer (SI)

1
Get an element of array in AL

register

2

Increment the array pointer (SI)

Compare next element of array

with AL

Is No

CF = 1?

Yes

11

Exchange AL and

memory pointed by SI

Exchange AL and memory

pointed by SI – 1

Decrement CH count

No Is
ZF = 1?

Yes

Decrement CL count

No

Is

ZF = 1?

Yes

Stop

PROGRAM

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART : 1000 MOV SI, 1100H C7 C6 00 11 ; Set SI register as pointer for array

 1004 MOV CL, [SI} 8A 0C ; Set CL as count for N – 1 repetitions

 1006 DEC CL FE C9

RE PE AT 1008 MOV SI, 1100H C7 C6 00 11 ; Initialize pointer

 100C MOV CH, [SI] 8A 2C : Set CH as count for N – 1 comparisons

 100E DEC CH FE CD

 1010 INC SI 46 ; Decrement the count

RE PCO M 1011 MOV AL, [SI] 8A 04 ; Get an element of array in AL register

 1013 INC SI 46

 1014 CMP AL, [SI] 3A 04 ; Compare with next element of array

 ; in memory

 1016 JC AHEAD 72 05 ; It AL register is lesser than memory,

 „then go to AHEAD

 1018 XCHG AL, [SI] 86 04 ; If AL is less than memory then

 ; exchange

 101A XCHG AL, [SI –1] 86 44 FF ; the content of memory pointed by

 ; SI and the previous memory location

AHEAD 101D DEC CH FE CD ; Decrement the count for comparisons

 101F JNZ REPCOM 75 F0 ; Repeat comparisons until CH count is

 ; zero

 1021 DEC CL FE C9 ; Decrement the count for repetitions

 1023 JNZ REPEAT 75 E3 ; Repeat N – 1 comparisons until CL

 count is zero

 1025 HLT F4

Address Input

1100 05 – c ount
1101 09
1102 49

1103 24
1104 32

1105 64

RESULT:

Address Output

1100 05 – count

1101 09
1102 24
1103 32
1104 49
1105 64

Thus the assembly language program to sort an array of data in ascending order using 8086

has been done and verify successfully.

12

 b. SORTING AN ARRAY IN DESCENDING ORDER

AIM:-

Write an assembly language program to sort an array of data in descending order.

ALGORITHM:-

1. Set SI register as pointer for array.

2. Set CL register as count for N – 1 repetitions.

3. Initialize array pointer.

4. Set CH as count for N – 1 comparisons.

5. Increment the array pointer.

6. Get an element of array AL register.

7. Increment the array pointer.

8. Compare the next element of the array with AL.

9. Checks carry flag. If carry flag is set then go to step -12, otherwise go to next step.

10. Exchange the content of memory pointed by SI and the content of previous memory location

(For this, exchange AL and memory pointed by SI, and then exchange AL and memory pointed

SI – I).

11. Decrement the count for comparisons (CH register).

12. Check zero flag. If zero flag is reset then go to step-6, otherwise go to next step.

13. Decrement the count for repetitions‟ (CL register).

14. Check zero flag. If zero flag is reset then go to step-3, otherwise go to next step.

15. Stop.

13

SORTING IN DESCENDING ORDER

Start

Load the address of the array in SI
register

Load the count in CL register and
decrement by one

2
Load the address of array in SI

register

 Load the count in CH register and

 decrement by one 1

Increment the array pointer (SI)

1
Get an element of array in AL

register

2

Increment the array pointer (SI)

Compare next element of array
with AL

No

Is

CF = 0?

Yes

14

Exchange AL and

memory pointed by SI

Exchange AL and memory

pointed by SI – 1

Decrement CH count

No

Is

ZF = 1?

Yes

Decrement CL count

No

Is

ZF = 1?

Yes

Stop

PROGRAM

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART : 1000 MOV SI, 1100H C7 C6 00 11 ; Set SI register as pointer for array

 1004 MOV CL, [SI} 8A 0C ; Set CL as count for N – 1 repetitions

 1006 DEC CL FE C9

RE PE AT 1008 MOV SI, 1100H C7 C6 00 11 ; Initialize pointer

 100C MOV CH, [SI] 8A 2C : Set CH as count for N – 1 comparisons

 100E DEC CH FE CD

 1010 INC SI 46 ; Increment the count

RE PCO M 1011 MOV AL, [SI] 8A 04 ; Get an element of array in AL register

 1013 INC SI 46

 1014 CMP AL, [SI] 3A 04 ; Compare with next element of array

 ; in memory

 1016 JNC AHEAD 73 05 ; It AL is greater than memory, then go

 ; to AHEAD

 1018 XCHG AL, [SI] 86 04 ; If AL is less than memory then

 101A XCHG AL, [SI –1] 86 44 FF ; exchange the content of memory

 ; pointed by SI and the previous memory

 ; location

AHEAD 101D DEC CH FE CD ; Decrement the count for comparisons

 101F JNZ REPCOM 75 F0 ; Repeat comparisons until CH count is

 zero

 1021 DEC CL FE C9 ; Decrement the count for repetitions

 1023 JNZ REPEAT 75 E3 ; Repeat N – 1 comparisons until CL

 count is zero

 1025 HLT F4

Address Input

1100 05 – c ount
1101 09

1102 49
1103 24

1104 32
1105 64

Address Output

1100 05 – count

1101 64
1102 49
1103 32
1104 24

1105 09

RESULT:

Thus the assembly language program to sort an array of data in descending order using 8086

has been done and verify successfully.

15

2 C . SEARCHING FOR SMALLEST NUMBER IN AN ARRAY

AIM:-

Write an assembly language program to search the smallest data in an array.

ALGORITHM:

1. Load the staring address of the array in SI register.

2. Load the address of the result in DI register.

3. Load the number of bytes in the array in CL register.

4. Increment the array pointer (SI register).

5. Get the first byte of the array in AL register

6. Decrement the byte count (CL register).

7. Increment the array pointer (SI register).

8. Get next byte of the array in BL register.

9. Compare current smallest (AL) and next byte (BL) if the array.

10. Check carry flag. If carry flag is set then go to step -12, otherwise go to next step.

11. Move BL to AL.

12. Decrement the byte count (CL register).

13. Check zero flag. If zero flag is reset then go to step-7, otherwise go to next step.

14. Save the smallest data in memory pointed by DI.

15. Stop.

16

FLOWCHART

Start

Load the address of array in SI register

Load the address of result in DI register

Set CL as byte count

Increment array pointer (SI)

 Get the first byte of array in AL register

 Decrement the byte count

B Increment array pointer (SI)

Get the next byte of array in BL register

Compare AL and BL register

Yes Is
CF = 1?

MoveNo BL to AL

A

A

Decrement byte count (CL)

B No
Is

ZF = 1?

Yes

Store AL in memory

Stop

17

PROGRAM

 Label Address Mnemonics Hex code Comments

 Opcode Operand

ST ART 1000 MOV SI, 1100H C7 C6 00 11 ; Set SI register as pointer for array

 1004 MOV DI, 1200H C7 C7 00 12 ; Set DI register as pointer for result

 1008 MOV CL, [SI] 8A 0C ; Set CL as count for elements in the array

 100A INC SI 46 ; Increment the address pointer

 100B MOV AL, [SI] 8A 04 ; Set first data as smallest

 100D DEC CL FE C9 ; Decrement the count

AGAIN 100F INC SI 46 ; Make SI to point to next data in array

 1010 MOV BL, [SI] 8A 1C ; Get the next data in BL register

 1012 CMP AL, BL 38 D8 ; Compare current smallest data in AL

 ; with BL

 1014 JC AHEAD 72 02 ; If carry is set then AL is less than BL

 ; hence proceed to AHEAD

 1016 MOV AL, BL 88 D8 ; If carry is not set then make BL as

 ; current smallest

AHE AD 1018 DEC CL FE C9 ; Decrement the count

 101A JNZ AGAIN 75 F3 ; If count is not zero repeat search

 101C MOV [DI], AL 88 05 ; Store the smallest data in memory

 101E HLT F4

Smallest no in the array

 Address Input

 1100 (05) count

 1101 22
 1102 AA
 1103 FF

 1104 45
 1105 50

 Address Output

 200 22

RESULT:
Thus the assembly language program for smallest data in an array using 8086 has been done

and verify successfully.

18

2D). SEARCHING FOR LARGEST NUMBER IN AN ARRAY

AIM:-

Write an assembly language program to search the largest data in an array.

ALGORITHM:

1. Load the staring address of the array in SI register.

2. Load the address of the result in DI register.

3. Load the number of bytes in the array in CL register.

4. Increment the array pointer (SI register).

5. Get the first byte of the array in AL register

6. Decrement the byte count (CL register).

7. Increment the array pointer (SI register).

8. Get next byte of the array in BL register.

9. Compare current smallest (AL) and next byte (BL) if the array.

10. Checks carry flag. If carry flag is set then go to step -12, otherwise go to next step.

11. Move BL to AL.

12. Decrement the byte count (CL register).

13. Check zero flag. If zero flag is reset then go to step-7, otherwise go to next step.

14. Save the largest data in memory pointed by DI.

15. Stop.

19

FLOWCHART:

 Start

 A

 Set SI register as array pointer

Is Yes

CF = 0?

Set DI register as result pointer

No

 Set CL as byte count Move BL to AL

Decrement by count Increment array pointer

 Get the first byte of array in AL Yes
Is register B

ZF = 1?

No

Decrement the byte count

Store AL in memory

B Increment the array pointer

Stop

 Get the next byte of the array in BL

 Compare AL and BL registers

 A

20

PROGRAM

 Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART 1000 MOV SI, 1100H C7 C6 00 11 ; Set SI register as pointer for array

 1004 MOV DI, 1200H C7 C7 00 12 ; Set DI register as pointer for result

 1008 MOV CL, [SI] 8A 0C ; Set CL as count for elements in the

 ; array

 100A INC SI 46 ; Increment the address pointer

 100B MOV AL, [SI] 8A 04 ; Set first data as smallest

AGAIN 100D DEC CL FE C9 ; Decrement the count

 100F INC SI 46 ; Make SI to point to next data in array

 1010 MOV BL,[SI] 8A 1C ; Get the next data in BL register

 1012 CMP AL, BL 38 D8 ; Compare current smallest data in AL

 ; with BL

 1014 JNC AHEAD 73 02 ; If carry is set then AL is less than BL

 ; hence proceed to AHEAD

 1016 MOV AL, BL 88 D8 ; If carry is not set then make BL as

AHE AD ; current largest

 1018 DEC CL FE C9 ; Decrement the count

 101A JNZ AGAIN 75 F3 ; If count is not zero repeat search

 101C MOV [DI], AL 88 05 ; Store the smallest data in memory

 101E HLT F4

Largest

 Address Input

 1100 05 – count

 1101 22
 1102 AA

 1103 FF
 1104 45

 1105 50

 Address Output

 1200 FF

RESULT:

Thus the assembly language program for largest data in an array using 8086 has been done

and verify successfully.

21

VIVA QUES TIONS AND ANSWERS

1. What are the different types of Addressing Modes?
 The different types of Addressing Modes are

Immediate, Direct, Register, Register Indirect, Indexed, Register Relative addressing modes

2.What are Data Copy/Transfer Instructions?

A:- Mov, Push, Pop, Xchg, In, Out, Xlat, Lea, Lds/Les, Lahf, Sahf, Pushf, Popf

3. What are Machine Control Instructions?

A:- Nop, Hlt, Wait, Lock

4) What are Flag Manipulation Instructions?
A:- Cld, Std, Cli, Sti

5) What are String Instructions?
A:- Rep, MovSB/MovSW, Cmps, Scas, Lods, Stos

6. Why data bus is bi-directional?
 The microprocessor has to fetch (read) the data from memory or input device for processing a nd

after processing, it has to store (write) the data to memory or output device. Hence the data bus is
bi-directional.

7. Why address bus is unidirectional?
 The address is an identification number used by the microprocessor to identify or access a

memory location or I / O device. It is an output signal from the processor. Hence the address bus
is unidirectional.

8. What is the function of microprocessor in a system?
 The microprocessor is the master in the system, which controls all the activity of the system. It

issues address and control signals and fetches the instruction and data from memory. Then it
executes the instruction to take appropriate action.

22

3. PROGRAM FOR STRING MANIPULATION OPERATIONS USING 8086

AIM:-

To write a program for string manipulation such as fill a byte, move a string; compare the string by

using 8086 microprocessor kit.

ALOGRITHM:

a) Move the string:

Step1: Start the process

Step2: Initialize the memory

Step3: Clear the direction flag

Step4: Move the value to string

Step5: Stop the process

b) Compare the string: Step1:

Start the process

Step2: Initialize the counter and carry value

Step3: Initialize the memory value

Step4: Compare two values

Step5: If the two value are equal set the carry otherwise reset

Step6: Stop the process

c) Fill a Byte:

Step1: Start the process

Step2: Clear the direction flag

Step3: Initialize the counter

Step4: Get the value of byte

Step5: Initialize the memory

Step6: Store the value in memory

Step7: Stop the process

23

Move the String:

START

Initialize the memory

Location & counter value

Clear direction flag

Move the string value

IF No

Zero

Yes

STOP

24

3a) Move the String:

PROGRAM:

Label Address Mnemonics He x c ode Comments

 Opcode Operand

 1000 MOV SI,1100 C7, C6, 00, 11 Initialize the memory

 1004 MOV DI,1200 C7, C7, 00, 12 Initialize the memory

 1008 MOV CX,0005 C7, C1, 05, 00 Initialize the counter

 100C CLD FC Clear the direction flag

L OOP1: 100D MOVSB A4 Store the result of string

 100E LOOP L OOP1 E2, FD Go to LOOP L1

 1010 HLT F4 Stop the process.

Observation:

Address Input

1100 11

1101 22

1102 33

1103 44

1104 55

Address Output

1200 11

1201 22

1202 33

1203 44

1204 55

25

Compare the String:

START

Initialize counter and carry value

Initialize the memory value

If Yes

equal

No

Set Set

Zero F lag = 0 zero Flag = 1

STOP

26

3b) Compare the String:

PROGRAM

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 CLD FC Clear the direction flag

 1001 MOV DX,0000 C7, C2, 00, 00 Initialize the carry

 1005 MOV CX,0005 C7, C1, 05, 00 Initialize the counter

 1009 MOV SI,1200 C7, C6, 00, 12

 100D MOV DI,1300 C7, C7, 00, 13 Initialize the memory

 1011 REPZ CMPSB F3, A6 Compare the string

 1013 JNZ LOOP1 75, 01 If no zero to L1

 1015 INC DX 42 Increment DX value.

L OOP1: 1016 MOV [1400], DX 89, 16, 00, 14 Move the value in memory

 101A HLT F4 Stop the process

Address Input

 1300 11

1301 12

1302 13

1303 14

1304 15

27

Address Input

1200 11

1201 12

1202 13

1203 14

1204 15

Address Output

1400 01

1401 00

Fill a Byte:

START

Clear the direction flag

Initialize the counter

Get the value of byte

Initialize the memory &
Store value in memory

STOP

28

3c) Fill a Byte

PROGRAM

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 CLD FC Clear the direction flag

 1001 MOV DX, 0005 C7, C2, 05, 00 Initialize the counter

 1005 MOV AL,1F C6, C0,1F Get the value of byte

 1008 MOV DI,1200 C7, C7, 00, 12 Initialize the memory

L OOP1: 100C STOSB AA Store the value

 100D LOOP LOOP1 E2, FD Loop L1

 100F HLT F4 Stop the process

Address Input

1200 1F

1201 1F

1202 1F

1203 1F

1204 1F

Address Output

1200 1F

1201 1F

1202 1F

1203 1F

1204 1F

RESULT:

Thus the operation of string manipulation is done and verified using 8086 microprocessor.

29

VIVA QUES TIONS AND ANSWERS

1. Explain the difference between a JMP and CALL instruction?
 A JMP instruction permanently changes the program counter.
 A CALL instruction leaves information on the stack so that the original program execution

sequence can be resumed.

2. What is Assembler?
 The assembler translates the assembly language program text which is given as input to the

assembler to their binary equivalents known as object code.

3. What is the use of HLDA?

 HLDA is the acknowledgment signal for HOLD. It indicates whether the HOLD signal is received
or not.

 HOLD and HLDA are used as the control signals for DMA operations.

4. Explain about "LEA"?

 LEA(Load Effective Address) is used for initializing a register with an offset address.
 A common use for LEA is to intialize an offset in BX, DI or SI for indexing an address in

memory.

5. Difference between "Shift" and "Rotate".

 Shift and Rotate commands are used to convert a number to another form where some bits are
shifted or rotated.

 A rotate instruction is a closed loop instruction. That is, the data moved out at one end is put back

in at the other end.

6. What are the modes in which 8086 can operate?
 The 8086 can operate in two modes and they are minimum (or uniprocessor) mode and

maximum (or multiprocessor) mode.

7. What is the data and address size in 8086?

The 8086 can operate on either 8-bit or 16-bit data. The 8086 uses 20 bit address to access
memory and 16-bit address to access 1/0 devices.

8. Explain the function of M/IO in 8086.
The signal M/IO is used to differentiate memory address and 1/0 address When the processor is

accessing memory locations MI 10 is asserted high and when it is accessing 1/0 mapped devices
it is asserted low.

30

4. CODE CONVERSION, DECIMAL ARITHMETIC AND MATRIX OPERATIONS

4a) Hexadecimal to Decimal code conversion

Aim:

To write an assembly language program to convert hexadecimal number into decimal

number

Algorithm:

1. Load the number to be converted into the accumulator.

2. If the number is less than 100 (64H), go to next step; otherwise, subtract 100 (64H)

repeatedly until the remainder is less than 100 (64H). Have the count(100‟s value) in

separate register which is the carry.

3. If the number is less than 10 (0AH), go to next step; otherwise, subtract 10 (0AH)

repeatedly until the remainder is less than 10 (0AH). Have the count(ten‟s value) in

separate register.

4. The accumulator now has the units.

5. Multiply the ten‟s value by 10 and add it with the units.

6. Store the result and carry in the specified memory location.

31

FLOWCHART:

Hexadecimal to Decimal conversion

START

Get the Hex data in A

Load B with 100D

Divide A by B

Store (A) ie No of 100‟s

Load B with 10D

Divide A by 10D

Store (A) as No.of tens

Store (B) as No. Of Units

Stop

32

PROGRAM

Label Address Mnemonics Hex code Comments

 Opc ode Operand

ST ART 1000 M OV SI,1100 C7 C6 00 11 ; Load the input address 1100

 1004 M OV DX,00 00 C7 C2 00 00 ; Load address in SI

 1008 M OV AX,[SI] 8B 04 ; Load 64 to Count the number of 100s

 100A M OV BX,00 64 C7 C3 64 00 ;Get the number of hundreds

 100E DIV BX F7 F3 ; Load number of hundreds in1102 &

 1103

 1010 M OV [SI+02],AX 89 44 02 ; Move the remainder to AX

 1013 M OV AX,DX 89 D0 ; Initialize DX with 0000

 1015 M OV DX ,00 00 C7 C2 00 00 ; Load 0A to find number of tens

 1019 M OV BX, 00 0A C7 C3 0A 00 ; Divide by 0A to get number of tens

 101D DIV BX F7 F3 ; Move no of tens to the address 1104 &

 1105

 101F M OV [SI+04],AX 89 44 04 ; Move no of ones to the address 1106 &

 1107

 1022 M OV [SI+06],DX 89 54 06 ; Halt

 1025 HLT F4

Address Input

1100 FF

1101 00

Address Output

1102 02

1103 00

1104 05

1105 00

1106 05

1107 00

33

MATRIX OPERATION

FLOW CHART:

START

Initialize the pointer for two

Matrices

AL = Increment Pointer

CL = CL – 1

IF

CL -0
NO

YES

Store result

STOP

34

4b. MATRIX OPERATIONS USING 8086

AIM:

To write a program for addition of two 3x3 matrix by using 8086.

ALGORITHM:

1. Initialize the pointer only for data and result

2. Load AL with count

3. Add two matrix by each element

4. Process continues until CL is zero

5. Store result.

PROGRAM

Label Address Mnemonics Hex code Comments

 Opcode Ope ra nd

ST ART 1000 M OV CL,09 C6 C1 09 ;count for 3 x 3 matrix

 1003 M OV SI,1200 C7 C6 00 12 ; address in SI

 1007 M OV DI,1300 C7 C7 00 13 ; address in DI

LOOP 100B M OV AL,[SI] 8A 04 ;Load AL with matrix

 100D M OV BL,[DI] 8A 1D ; Load BL with matrix

 100F ADD AL,BL 00 D8 ; ADD two data

 1011 M OV [DI],AL 88 05 ;Store result

 1013 INC DI 47 ; Increment DI

 1014 INC SI 46 ; Increment SI

 1015 DE C CL FE C9 ;Decrement CL

 1017 JNZ LOOP 75 F2 ; Loop continues until zero

 1019 INT 3 CC ; Break point

35

PROGRAM for Matrix operation using MASM assembler

.MODEL SMALL

.DATA

TAB DB 3,4,5,6,0

DB 1,4,5,7,0

DB 1,8,9,0,0

DB 1,8,9,2,0

DB 1,1,1,1,0

DB 0,0,0,0,0

TOTROWS DB 0

TOTCOLS DB 0

ROWS DB 5

COLS DB 4

.CODE

MOV AX,@DATA

MOV DS,AX

; COUNTING TOTAL ROWS

LEA SI,TAB

L1: MOV CX,4

L2: MOV AH,BYTE PTR[SI]

ADD TOTROWS ,

AH INC SI

36

Address Input Address Input Address Output

1200 01 1300 12 1300 13

1201 02 1301 02 1301 04

1202 03 1302 04 1302 07

1203 04 1303 06 1303 0A

1204 05 1304 08 1304 0D

1205 06 1305 02 1305 08

1206 07 1306 04 1306 0B

1207 08 1307 06 1307 0E

1208 09 1308 03 1308 0C

LOOP L2

MOV AH,TOTROWS

MOV [SI],AH

MOV TOTROWS,0

INC SI

SUB ROWS,1

CMP ROWS,0

JG L1

; COUNTING TOTAL COLS

LEA SI,TAB

MOV BX,00

L3: MOV CX,5

LEA SI,TAB

ADD SI,BX

L4: MOV AH,BYTE PTR[SI]

ADD TOTCOLS , AH

ADD SI,5

LOOP L4

MOV AH,TOTCOLS

MOV [SI],AH

MOV TOTCOLS,0

SUB COLS,1

CMP COLS,0

ADD BX,1

JG L3

MOV AX,4C00H

INT 21H

END

RESULT:

Thus the matrix operation and code conversion were executed and verified successfully.

37

VIVA QUES TIONS AND ANSWERS

1. Difference between JMP and JNC?

A:-JMP is Unconditional Branch.

JNC is Conditional Branch.

2.What are the 4 Segments in 8086?
A:-Code Segment Register {CS}
Data Segment Register {DS}

Extra Segment Register {ES}
Stack Segment Register {SS}

3. Distinguish between packed BCD and unpacked BCD
 Packed BCD numbers are stored two digits to a byte in 4 bit groups referred as nibbles
 Ex:86 in unpacked BCD there is only one digit per byte Ex: 08, 06

4. Describe CBW and CWD instructions
 The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended for use
when the operand-size attribute is 16 and the CWDE instruction for when the operand-size attribute is 32.
The CWDE instruction is different from the CWD (convert word to double) instruction. The CWD
instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE instruction uses the
EAX register as a destination.

5. Describe about MUL, IMUL, DIV, IDIV instructions
 MUL (multiply) instruction is used for unsigned multiplication. This instruction multiplies bytes or
words.
 IMUL (Integer multiply) instruction is used for signed multiplication. This instruction multiply bytes or
words.
The DIV instruction is to divide unsigned data. We can divide a byte by byte, a word by byte, double word by
word.
The IDIV instruction is to divide signed data. We can divide a byte by byte, a word by byte, double word by
word and the operations are just like DIV instructions

6.Describe about LOOP instructions
 The LOOP instruction is a combination of a decrement of CX and a conditional jump. In the 8086, LOOP
decrements CX and if CX is not equal to zero, it jumps to the address indicated by the label. If CX becomes a
0, the next sequential instruction executes.

38

5. MOVE A DATA BLOCK WITHOUT OVERLAP

AIM:

To convert a given Move a data block without overlap using u086 MASM assembler and

8086 kit.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given decimal number with accumulator value.

5. When both matches, the equivalent hexadecimal value is in B register.

6. Store the resultant in memory location.

Move data block without overlap using 8086 kit

 1000 ORG 1000H

 1000 B8 0000 MOV AX,0000H

 1003 8E D8 MOV DS,AX

 1005 B9 0005 MOV CX,0005

 1008 BF 3000 MOV DI,3000H

 100B BE 1200 MOV SI,1200H

 100E 8B 04 L1 MOV AX,[SI]

 1010 89 05 MOV [DI],AX

 1012 46 INC SI

 1013 47 INC DI

 1014 49 DEC CX

 1015 8B C1 MOV AX,CX

 1017 75 F5 JNZ L1

 1019 B4 4C MOV AH,4CH

 101B CD 21 INT 21H

 39

OBSERVATION:

INPUT:

1200 = 14H
1201 = 35H
1202 = 18H
1203 = 36H

1204 = 54H

OUTPUT:

1300 = 14H
1301 = 35H
1302 = 18H
1303 = 36H
1304 = 54H

40

PROGRAM

Move data block without overlap using 8086 MASAM Assembler

DATA SEGMENT X DB 01H,02H,03H,04H,05H ;Initialize Data Segments Memory Locations

Y DB 05 DUP (0)

DATA ENDS

CODE SEGMENT ASSUME CS: CODE, DS: DATA

START:

MOV AX, DATA

MOV DS, AX

MOV CX, 05H

LEA SI, X+04

LEA DI, X+04+03

CODE ENDS

END START

RESULT:

Thus the program for moving the data block without overlap was executed and verified

using 8086 MASM assembler and 8086 kit.

41

; Initialize DS to point to start of the memory

; set aside for storing of data

; Load counter

; SI pointer pointed to top of the memory
block
; 03 is displacement of over lapping, DI pointed to; the top of the

destination block

VIVA QUES TIONS AND ANSWERS

1. Give examples of conditional branch instructions
 In a loop if there are different jump instructions with a condition or counter called conditional loop
and instructions in that loop are called unconditional branch instructions.

2. Give examples of unconditional branch instructions
 In a loop if there are different jump instructions with no condition it is called unconditional loop
and instructions in that loop are called unconditional branch instructions.

3. What are flag manipulation instructions ? Give examples
 Flag manipulation instructions. STC, CLC, CMC. Set, clear, complement carry flag. STD, CLD.
Set, clear direction flag

4.Explain about DAA instruction
 decimal adjust addition result
 DAA
 The daa instruction is used to adjust the content of the AL register after that register is used to
perform the addition of two packed BCDs.

5. Explain about CALL and RETURN instructions

 CALL 16-bit memory address of a subroutine
 It is a 3-byte instruction that transfers the program sequence to a subroutine

 RETURN instruction in the subroutine. The return instruction is used either to return a function
value or to terminate the execution of a function.

42

6. PASSWORD CHECKING, PRINT RAM SIZE AND SYSTEM DATE

AIM:

To write an 8086 MASM assembler program for performing password checking, Print

RAM size and system date.

APPARATUS REQUIRED:

SL.NO ITEM QUANTITY

1. 8086 Microprocessor kit 1

2. Intel Desktop systems with MASM 1

3. RTC Interface board 1

PROGRAM:

6 A) PASSWORD CHECKING

; PASSWORD IS MASM1234
DATA SEGMENT

PASSWORD DB 'MASM1234'

LEN EQU ($-PASSWORD)

MSG1 DB 10,13,'ENTER YOUR PASSWORD: $'

MSG2 DB 10,13,'WELCOME TO ELECTRONICS WORLD!!$'

MSG3 DB 10,13,'INCORRECT PASSWORD!$'

NEW DB 10,13,'$'

INST DB 10 DUP(0)
DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS:

DATA START:
MOV AX,DATA

MOV DS,AX

LEA DX,MSG1

MOV AH,09H

INT 21H

MOV SI,00

UP1:

MOV AH,08H

INT 21H

CMP AL,0DH

43

JE DOWN

MOV [INST+SI],AL

MOV DL,'*'

MOV AH,02H

INT 21H

INC SI

JMP UP1

DOWN:

MOV BX,00

MOV CX,LEN

CHECK:

MOV AL,[INST+BX]

MOV DL,[PASSWORD+BX]

CMP AL,DL

JNE FAIL

INC BX

LOOP CHECK

LEA DX,MSG2

MOV AH,09H

INT 21H

JMP FINISH

FAIL:

LEA DX,MSG3

MOV AH,009H

INT 21H

FINISH:

INT 3

CODE ENDS

END START

END

Password set Input

1240:16 (1)

1241:1E (2)

1242:26 (3)

1243:25(4)

1244:2E(5)

Output:

Enter the Password:

Type 12345

Message: 'WELCOME TO ELECTRONICS WORLD!!$'

>>

44

6 B)DISPLAY MONTH/DAY/YEAR

.MODEL SMALL

.STACK 64

.DATA

Today

SAVEDAY DB ?

SAVEMON DB ?

TEN DB 10

ELEVEN DB 11

TWELVE DB 12

DAYSTAB DB ' SUNDAY, $ ', ' MONDAY, $ '

 DB ' TUESDAY, $ ', ' WEDNESDAY, $ '

 DB ' THURSDAY, $ ', ' FRIDAY, $ '

 DB ' SATURDAY, $ '

MONTAB DB ' JANUARY $ ', ' FEBUARY $ ', ' MARCH $ '

 DB ' APRIL $ ', ' MAY $ ', ' JUNE $ '

 DB ' JULY $ ', ' AUGUST $ ', ' SEPTEMBER $ '

 DB ' OCTOBER $ ', ' NOVEMBER $ ', ' DECEMBER $ '

 CODE

BEGIN PROC FAR

 MOV AX,@DATA

 MOV DS,AX

 MOV ES,AX

 MOV AX,0600H

 CALL Q10SCR

 CALL Q20CURS

 MOV AH,2AH

 INT 21H

 MOV SAVEMON,DH

 MOV SAVEDAY,DL

 CALL B10DAYWK

 CALL C10MONTH

 CALL D10DAYMO

 CALL E10INPT

 CALL Q10SCR

 45

 MOV AX,4C00H

 INT 21H

BEGIN E NDP

B10DAYWK PROC NEAR

 MUL TWELVE

 LEA DX,DAYSTAB

 ADD DX,AX

 MOV AH,09H

 INT 21H

 RET

B10DAYWK ENDP

C10MONTH PROC NEAR

 MOV AL,SAVEMON

 DEC AL

 MUL ELEVEN

 LEA DX,MONTAB

 ADD DX,AX

 MOV AH,09H

 INT 21H

 RET

C10MONTH ENDP

.386

D10DAYMO PROC NEAR

 MOVZX AX,SAVEDAY

 DIV TEN

 OR AX,3030H

 MOV BX,AX

 MOV AH,02H

 MOV DL,BL

 INT 21H

 MOV AH,02H

 MOV DL,BH

 INT 21H

 RET

 46

47

D10DAYMO ENDP

E10INPT PROC NEAR

 MOV AH,10H

 INT 16H

 RET

E10INPT ENDP

Q10SCR PROC NEAR

 MOV AX,0600H

 MOV BH,17H

 MOV CX,0000

 MOV DX,184FH

 INT 10H

 RET

Q10SCR ENDP

Q20CURS PROC NEAR

 MOV AH,02H

 MOV BH,00

 MOV DH,10

 MOV DL,24

 INT 10H

 RET

Q20CURS ENDP

 END BEGIN

Observation:

Input

Set time: 1200 : 05 LSB

1201: 05 MSB(seconds)

1202: 09

1203:05 (Minutes)

1204:03

1205: 02(Hours)

Set Date:

1206: 05 LSB

1207: 02 MSB(Date)

1208: 01LSB

1209: 00 MSB (Month)

120A:06 LSB

120B : 01 MSB (year)

Output:

The time is displayed as ; 23:59:55

The date is displayed as ; 25:01:16

After 5 seconds the date is displayed as

Date: 26:01:15 in VBMB 8 Kit

>>

48

6 C) RAM SIZE

ORG 0000H

CLR

CLR

CPL A

ADD A, #01H

MOV A,R3

AGAIN: SJMP AGAIN

Observation:

OUTPUT

“RAM SIZE IS 16 KB” is displayed in the LCD.

RESULT:

Thus the output for the Password checking, Print RAM size and system date was

executed and verified using MASM assembler successfully

49

VIVA QUES TIONS AND ANSWERS

1. How do you read and write characters on to screen using interrupts?

 An interrupt is a condition that causes the microprocessor to temporarily work on a
different task, and then later return to its previous task. Interrupts can be internal or external.

2. What is the significance of LEA instruction?

 LEA(Load Effective Address) is used for initializing a register with an offset address.
A common use for LEA is to intialize an offset in BX, DI or SI for indexing an address in
memory.

An equivalent operation to LEA is MOV with the OFFSET operator, which generates slightly
shorter machine code.

3. What is an assembler directive?

 An assembler directive is a direct command to microprocessor to perform certain operations.

4. How the assembler process is carried out in 8086?

 A microprocessor executes a collection of machine instructions that tell the processor what to do

is known as assembly process.

5. How a procedure is represented in assembler directive?

Procedures are a group of instructions stored as a separate program in memory and it is called

from the main program whenever required. The type of procedure depends on where the
procedures are stored in memory. If it is in the same code segment as that of the main program

then it is a near procedure otherwise it is a far procedure.

50

7. COUNTERS AND TIME DELAY

AIM:

To write an assembly language program for up counter using 8086 kit and 8086 MASM

assembler.

APPARATUS REQUIRED:

SL.NO ITEM SPECIFICATION QUAN TIT Y

1. Microprocessor kit 8086 kit 1

2. Power Supply +5 V, dc,+12V dc 1

3. RTC Interface board – –

PROCEDURE:

1. Enter the program into the kit

2. Execute the program

3. The counter value displayed in the LCD, he value starts from 00H T0 99H

51

PROGRAM

UP COUNTER using 8086 kit

1000 EB 2F 10 START: CALL CONVERT
1003 E8 00 1D CALL DISPLAY
1006 B9 00 00 DELAY: MOV CX,0000H
1009 41 L1: INC CX

100A 81 F9 FF FF CMP CX,0FFFFH

100E 75 F9 JNZ L1
1010 BE 00 15 MOV SI,1500H
1013 8A 04 MOV AL,[SI]

1015 FE C0 INC AL
1017 88 04 MOV [SI],AL

1019 3C 64 CMP AL,064H

101B 75 E3 JNZ START
101D B0 00 MOV AL,00H
101F 88 04 MOV [SI],AL

1021 EB DD JMP START
1023 B4 06 DISPLAY: MOV AH,06H

1025 BA 00 16 MOV DX,1600H
1028 B5 01 MOV CH,01H

102A B1,00 MOV CL,00H
102C CD 05 INT 5

102E C3 RET
102F BE 00 15 CONVERT: MOV [SI],1500H

1032 BB 02 16 MOV BX,1602H
1035 B0 24 MOV AL,24H

1037 88 07 MOV [BX],AL
1039 8A 04 MOV AL,[SI]

103B B4 00 MOV AH,00H
103D B6 0A MOV DH,0AH

103F F6 F6 DIV DH
1041 80 C4 30 ADD AH,30H

1044 4B DEC BX
1045 88 27 MOV[BX],AH

1047 4B DEC BX
1048 04 30 ADD AL,30H

104A 88 07 MOV [BX],AL
104C 4B DEC BX

104D C3 RET
104E E4 02 GETC: IN AL,02H

1050 24 FF AND AL,0FFH
1052 3C F0 CMP AL,0F0H

1054 75 F8 JNE GETC
1055 F4 HLT

 52

UP COUNTER using 8086 MASM assembler

MODEL SMALL

STACK 100H

DATA

PROMPT DB 'The counting from 0 to 9 is : $'

CODE

MAIN PROC

MOV AX, @DATA

; initialize DS

MOV DS, AX

LEA DX, PROMPT

; load and print PROMPT

MOV AH, 9

INT 21H

MOV CX, 10

MOV AH, 2

MOV DL, 48

@LOOP:

INT 21H

INC DL

DEC CX

JNZ @LOOP

MOV AH, 4CH

; initialize CX

; set output function

; set DL with 0

; loop label

; print character

; increment DL to next ASCII character

; decrement CX

; jump to label @LOOP if CX is 0

; return control to DOS

INT 21H

MAIN ENDP

END MAIN

RESULT:

Thus the program for up counter using 8086 MASM assembler was executed and verified

successfully

53

VIVA QUES TIONS AND ANSWERS

1. What is a RAM?

RAM is a random access memory which is used to store data temporarily.

2. What are the types of RAM?

Static RAM, Dynamic RAM

3. How many 32kB RAMs can be interfaced with 8086?

4 32kB RAMs can be interfaced with 8086

4. What is the necessity of RAM in processor?

RAM is necessary to hold the data temporarily when a processor is executing any program.

5. Differentiate EPROM and EEPROM.
EPROM and EEPROM both are erasable and can be reprogrammed, but the basic difference between them is that
EPROM is erased using Ultra violet rays whereas, EEPROM can be erased using electric signals . Let us
discuss the differences between EPROM and EEPROM with the help of comparison chart shown below.

54

8. TRAFFIC LIGHT CONTROL

AIM:-

To write an assembly program for Traffic Light Control using 8086 LCD Microprocessor
Kit.

 PROGRAM:

 CNTRL EQU 26H

 PORT A EQU 20H

 PORT B E QU 22H

 PORT C E QU 24H

 Label Address Mnemonics Hex code Comments

 Opc ode Operand

 ST ART 1000 M OV AL,80H C6 C0 80

 1003 OUT (CNTRL)26,AL E6 26

 REPEAT 1005 M OV BX,LOOK UP C7 C3 73 10

 1009 M OV SI,LABEL C7 C6 7F 10

 100D CAL L OUT E8 33 00

 1010 M OV AL,[SI] 8A 04

 1012 OUT (PORTA)20,AL E6 20

 1014 CAL L DELAY 1 E8 4D 00

 1017 INC SI 46

 1018 INC BX 43

 1019 CAL L OUT E8 27 00

 101C M OV AL,[SI] 8A 04

 101E OUT (PORTB)22,AL E6 22

 1020 CAL L DELAY 1 E8 41 00

 1023 INC SI 46

 1024 INC BX 43

 1025 CAL L OUT E8 1B 00

 1028 M OV AL,[SI] 8A 04

 102A OUT (PORTC)24,AL E6 24

 102C CAL L DELAY 1 E8 35 00

 102F INC SI 46

 1030 INC BX 43

 55

 1031 CAL L OUT E8 0F 00

 1034 M OV AL,[SI] 8A 04

 1036 OUT (PORTC)24,AL E6 24

 1038 INC SI 46

 1039 M OV AL,[SI] 8A 04

 103B OUT (PORTA)20,,AL E6 26

 OUT : 103D CAL L DELAY 1 E8 24 00

 1040 J MP REPEAT E9 C2 FF

 1043 M OV AL,[BX] 8A 07

 1045 OUT (PORTC)24,AL E6 24

 1047 INC BX 43

 1048 M OV AL,[BX] 8A 07

 104A OUT (PORTB)22,AL E6 22

 104C INC BX 43

 104D M OV AL,[BX] 8A 07

 104F OUT (PORTA)20,AL E6 20

 DE L AY: 1051 CAL L DELAY E8 01 00

 A: 1054 RET C3

 A1: 1055 M OV DI,00040H C7 C7 40 00

 1059 M OV DX,0FFFFH C7 C2 FF FF

 105D DE C DX 4A

 105E JNZ A1 75 FD

 1060 DE C DI 4F

 DE L AY1: 1061 JNZ A 75 F6

 B: 1063 RET C3

 B1: 1064 M OV DI,00015H C7 C7 15 00

 1068 M OV DX,0FFFFH C7 C2 FF FF

 106C DE C DX 4A

 106D JNZ B1 75 FD

 106F DE C DI 4F

 LOOK UP: 1070 JNZ B 75 F6

 1072 RET C3

 56

VIVA QUES TIONS AND ANSWERS

1. Give the sequence of operation in traffic light controller.

 The typical sequence is as follows:

 Green (safe to proceed)

 Amber (slow down, red light soon)

 Red (stop)

 Red / amber (stay stopped but just letting you know the light turns green soon)

2. What is the name of the peripheral device used to interface traffic light controller with microprocessor?
8255 PPI(Programmable peripheral Interface)

3. What is 8255?

 It is PPI- Programmable Peripheral Interface. it is used to connect I/O devices to microprocessor and supports parallel

communicat ion.

4. How many input and output ports are in PPI?

The port is a buffered I/O, which is used to hold the data transmitted from the processor to I/O device or v ice -versa

5. What is BSR mode?
Bit set or reset mode, If BSR=1,bit is set,if BSR=0,it is reset.

RESULT:

Thus the assembly language program for Traffic Light Control was executed and

verified using 8086 Microprocessor kit.

57

LABEL: 1073 DB 12H,27H,44H,10H

1077 2BH,92H,10H,9DH

 107B 84H,48H,2EH,84H

 107F DB 48H,6BH,20H,49H

 1083 04

FLOW CHART:

START

Store lookup table in DI register

Initialize counter registers CL with
04 for lookup table value

Get lookup table value in AL

Call delay

 NO If

 CL = 0

YES

58

9. STEPPER MOTOR CONTROL

AIM:-

To write an assembly language program to control the speed of stepper motor in

both directions using 8086 Microprocessor kit.

APPARATUS REQUIRED:

i. Microprocessor kit

ii. Stepper Motor Interface Card

iii. Stepper motor

ALGORITHM:-

a. Start the program

b. Store lookup table value in DI register

c. Initialize counter register CL with 04H for lookup table value.

d. Get lookup table value in CL.

e. Call delay

f. If CL = 0, go to step1 otherwise get next lookup table value.

59

Lookup table:-

(Anti clockwise direction) (Clockwise direct ion)

1200 : 09 1200 : 0A

1201 : 05 1201 : 06

1202 : 06 1202 : 05

1203 : 0A 1203 : 09

PROGRAM:

Labe l Address Mnemonics Hex code Comments

 Opc ode Operand

ST ART 1000 M OV DI,1200 C7,C7,00,12 ; Initialize lookup table

 1004 M OV CL,04 C6,C1,04 ;Initialize count value

RE PE AT 1007 M OV AL,[DI] 8A 05 Get lookup table value

 1009 OUT C0,AL E6 C0 ;Sent it to output port

 100B M OV DX,1010H C7 C2 10 10 ;Delay program

DELAY 100F DE C DX 4A

 1010 JNZ DELAY 75 FD

 1012 INC DI 47 ;Increment [DI]

 1013 L OOP REPEAT E2 F2 ;if CX  0, go to Repeat

 1015 J MP START E9 E8 FF ;Repeat to start

VIVA QUES TIONS AND ANSWERS

1. What are the applications of stepper motor

 Used in tape drives, floppy disc drives printers and electric watches. The stepper motor also use in X-Y plotter and robotics

2. Discuss the salient features of stepper motor

 The rotation angle of the motor is proportional to the input pulse.

The motor has full torque at standstill. Precise positioning and repeatability of movement since good stepper motors have an accuracy

of 3 – 5% of a step and this error is non cumulative from one step to the next.

3. What are the schemes used in stepper motor

A microcontroller or stepper motor controller can be used to activate the drive .Various drive technique s have been developed to better

approximate a sinusoidal drive waveform: these are half stepping and micro stepping.

4. Write the calculation for step size.

Let Nr be the number of rotor teeth and m be the number of stacks or phases.Hence, Tooth pitch is represented by the

5. How can the speed of stepper motor can be controlled?

 To control the speed of a stepper motor, you control the time between steps. And as long as there is enough excess torque to keep

up, you can control the position, speed, and acceleration.

RESULT:

Thus the assembly language program for speed control of stepper motor was executed and verified using

8086 Microprocessor kit.

60

 10. DIGITAL CLOCK

AIM:-

To display the digital clock specifically by displaying the hours, minutes and seconds

using 8086 kits

PROGRAM:

 Labe l Address Mnemonics Hex code Comments

 Opcode Operand

 ST ART : 1000 MOV AL,05H C6 C0 05

 1003 OUT DE,AL E6 DE
 1005 MOV AL,04H C6 C0 04

 1008 OUT DE,AL E6 DE
 100A MOV SI,1310H C7 C6 10 13

 100E MOV AL,[SI] 8A 04
 1010 OUT C0,AL E6 C0
 1012 INC SI 46

 1013 MOV AL,[SI] 8A 04
 1015 OUT D0,AL E6 D0

 1017 INC SI 46
 1018 MOV AL,[SI] 8A 04
 101A OUT C2,AL E6 C2

 101C INC SI 46
 101D MOV AL,[SI] 8A 04

 101F OUT D2,AL E6 D2
 1021 INC SI 46
 1022 MOV AL,[SI] 8A 04

 1024 OUT C4,AL E6 C4
 1026 INC SI 46

 1027 MOV AL,[SI] 8A 04
 1029 OUT D4,AL E6 D4
 L1: 102B MOV SI,1320H C7 C6 20 13

 102F IN AL,D4H E4 D4
 1031 AND AL,0FH 80 E0 0F

 1034 MOV [SI],AL 88 04
 1036 IN AL, C4H E4 C4
 1038 AND AL,0FH 80 E0 0F

 103B INC SI 46
 103C MOV [SI],AL 88 04

 103E IN AL, D2H E4 D2
 1040 AND AL,0FH 80 E0 0F
 1043 INC SI 46

 1044 MOV [SI],AL 88 04

 1046 IN AL, C2H E4 C2

 1048 AND AL,0FH 80 E0 0F
 104B INC SI 46

 104C MOV [SI],AL 88 04

 61

 104E IN AL, D0H E4 D0

 1050 AND AL,0FH 80 E0 0F

 1053 INC SI 46
 1054 MOV [SI],AL 88 04
 1056 IN AL, C0H E4 C0

 1058 AND AL,0FH 80 E0 0F
 105B INC SI 46

 105C MOV [SI],AL 88 04
OUT_CHECK: 105E MOV SI,1320H C7 C6 20 13

 1062 MOV AL,[SI] 8A 04

 1064 OUT E0,AL E6 E0
 1066 INC SI 46

 1067 MOV AL,[SI] 8A 04
 1069 OUT F0,AL E6 F0
 106B INC SI 46

 106C MOV AL,[SI] 8A 04
 106E OUT E2,AL E6 E2

 1070 INC SI 46
 1071 MOV AL,[SI] 8A 04
 1073 OUT F2,AL E6 F2

 1075 INC SI 46
 1076 MOV AL,[SI] 8A 04

 1078 OUT E4,AL E6 E4
 107A INC SI 46
 107B MOV AL,[SI] 8A 04

 107D OUT F4,AL E6 F4
 107F JMP L1 E9 A9 FF

 1082 ENDS

 Observation:

 Input

 1200 00

 1201 00

 1202 00

 1203 00

 1204 00

Output:

Time is displayed in the RTC board as

 ! Hour ŀ Minutes ŀ seconds ŀ

X 0 0 0 5 9

X 0 0 1 0 0

RESULT:

Thus the digital clock program has been written and executed using 8086 microprocessor

kit and the output of digital clock was displayed as [hours: minutes: seconds] successfully.

62

VIVA QUESTIONS AND ANSWERS

1. What type of RTC kit is used?

 DS1307

2. What is the format of time being displayed?

 HH:MM:SS

3. What are the di fferent functionalities of RTC kit?

 The purpose of an RTC or a real time clock is to provide precise time and date which can be used for various

applications

4. Whether 7 segment display used here is common anode or common cathode type.

 common anode type 7 segment display

5. What are the addresses of hour, minute and seconds register?

 Bit 6 of the hours register is defined as the 12- or 24-hour mode select bit. When high, the 12-hour mode is

selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic h igh being PM. In the 24-hour mode, bit 5 is the

second 10 hour bit (20- 23 hours).

 63

11. KEY BOARD AND DISPLAY

AIM:-

To write an assembly language program to interfacing of 8279 with 8086.

APPARATUS REQUIRED:-

 8086 Microprocessor kit


 8279 interface board 

ALGORITHM:-

(a) Rolling Display

Step1: Start the process

Step2: Initialize lookup table pointer, counter of keyboard display mode of 8279.

Step3: Initialize the prescalar counter and clear the display.

Step4: Get the seven segment display & carried it, in display RAM.

Step5: Increment the look up table pointer.

Step6: Decrement the counter until it becomes zero.

Step7: Stop the process.

(b) Accept a key and display it using 8279

Step1: Start the process

Step2: Set the data to set mode & display

Step3: Initialize the counter and clear the display RAM.

Step4: Write the display RAM command.

Step5: Clear the display RAM.

Step6: Decrement the counter value until it becomes zero.

Step7: Get the key data to be displayed.

Step8: Set the memory to need the FIFO RAM.

Step9: Get the corresponding code from look up table.

Step10: Store it is necessary.

Step11: Stop the process.

64

FLOW CHART:

(a) Rolling Display

START

Initialize look up table pointer & counter

Initialize keyboard / display mode of 8279

Initialize prescalar count

Clear display

Initialize 8279 in display RAM write mode

Get seven segment code

Write it in display RAM

Increment the look up table pointer

Decrement the count

NO If

Count =0

YES

STOP

65

PROGRAM:-

To Display „A‟

Labe l Address Mnemonics Hex code Comments

 Opc ode Operand

ST ART 1000 M OV AL,00 C6 C0 00 ; Display & keyboard mode set

 1003 OUT C2,AL E6 C2

 1005 M OV AL,0CC C6 C0 CC ; Clear Display

 1008 OUT C2,AL E6 C2

 100A M OV AL,90 C6 C0 90 ; Write display RAM

 100D OUT C2,AL E6 C2

 100F M OV AL,88 C6 C0 88 ; Get character

 1012 OUT C0,AL E6 C0

 1014 M OV AL,0FF C6, C0 FF ; Blank unused

 1017 M OV CX,0005 C7 C1 05 00 7segment LED‟s

NE XT 101B OUT C0,AL E6 C0

 101D L OOP NEXT E2 FC

 101F HLT F4 ; Stop the program

66

FLOW CHART:-

(b) Accept a key and display

START

Get the data to set mode and display

Initialize counter & clear the display 16x8 RAM

Write the display RAM command

Clear 8 x 8 display

Decrement counter

NO
If

Count =0

YES

Get the key data

YES If
Count =0

 NO

Set memory to read FIFO RAM

Get code from look up table

Store it in memory

67

PROGRAM:- To Rolling Display (Display message is‟ HELP US‟)

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART 1000 MOV SI,1200 C7 C6 00 12 ; load lookup table

 1004 MOV CX,000F C7 C1 0F 00

 1008 MOV AL,10 C6C010 ;Display / keyboard

 100B OUT C2,AL E6 C2 mode set

 100D MOV AL,0CC C6 C0 CC ; Clear Display

 1010 OUT C2,AL E6 C2

 1012 MOV AL,90 C6 C0 90 ; Write display RAM

 1015 OUT C2,AL E6 C2

NE XT : 1017 MOV AL,[SI] 8A 04 ; Get to be displayed

 1019 OUT C0,AL E6 C0 character

 101B CALL DELAY E8 E2 04 ;Call display program

 101E INC SI 46

 101F LOOP NEXT E2 F6

 1021 JMP START E9 DC FF ;Repeat

DELAY 1500 MOV DX,0A0FF C7 C2 FF A0 ;Delay program

LOOP1: 1504 DEC DX 4A

 1505 JNZ LOOP1 75 FD

 1507 RET C3

LOOK – UP – TABLE (“HELP US”)

1200 1201 1202 1203 1204 1205

FF FF FF FF FF FF

1206 1207 1208 1209 120A 120B

FF FF 98 68 7C C8

120C 120D 120E 120F

FF 1C 29 FF

RESULT:-
Thus the assembly language program for interfacing 8279 keyboard and display

controller with 8086 microprocessor trainer kit was executed and successfully verified.

68

VIVA QUES TIONS AND ANSWERS

1. Give some examples of input devices to microprocessor-based system.
The input devices used in the microprocessor-based system are Keyboards, DIP switches, ADC, Floppy
disc, etc.

2. What are the tasks involved in keyboard interface?
The tasks involved in keyboard interfacing are sensing a key actuation, debouncing the key and
generating key codes (Decoding the key). These task are performed software if the keyboard is interfaced
through ports and they are performed by hardware if the keyboard is interfaced through 8279.

3. How a keyboard matrix is formed in keyboard interface using 8279?
The return lines, RLo to RL7 of 8279 are used to form the columns of keyboard matrix. In decoded scan
the scan lines SLo to SL3 of 8279 are used to form the rows of keyboard matrix. In encoded scan mode,
the output lines of external decoder are used as rows of keyboard matrix.

4. What is scanning in keyboard and what is scan time?
The process of sending a zero to each row of a keyboard matrix and reading the columns for key actuation
is called scanning. The scan time is the time taken by the processor to scan all the rows one by one
starting from first row and coming back to the first row again.

5. What is scanning in display and what is the scan time?
In display devices, the process of sending display codes to 7 -segment LEDs to display the LEDs one by
one is called scanning (or multiplexed display). The scan time is the time taken to display all the 7-
segment LEDs one by one, starting from first LED and coming back to the first LED again.

69

12. PRINTER STATUS

AIM:

To write an assembly language program to print a message in printer using VBMB – 005

APPARATUS REQUIRED:

1. 8086 Microprocessor kit,
2. Power supply,
3. VBMB005 interfacing board.
4. Printer

70

(LOOK – UP - TABLE) ROUTINE TO INITIALISE PRINTER

1500 1501 1502 1503 1504 1505 1506

1B 47 09 09 09 1B 0E

1507 1508 1509 150A 150B 150C 150D

56 69 20 4D 69 63 72

150E 150F 1510 1511 1512 1513 1514

6F 73 79 73 74 65 6D

1515 1516 1517 1518 1519 151A 151B

73 0A 0A 09 09 09 09

151C 151D 151E 151F 1520 1521 1522

1B 78 01 44 45 4D 4F

1523 1524 1525 1526 1527 1528 1529

20 4F 46 0A 0A 09 09

152A 152B 152C 152D 152E 152F 1530

09 1B 78 00 1B 45 1B

1531 1532 1533 1534 1535 1536 1537

47 43 45 4E 54 52 4F

1538 1539 153A 153B 153C 153D 153E

4E 49 43 53 20 50 52

153F 1540 1541 1542 1543 1544 1545

49 4E 54 45 52 20 49

1546 1547 1548 1549 154A 154B 154C

00 4E 54 45 52 46 41

154D 154E 154F 1550 1551 1552 1553

43 45 20 42 4F 41 52

1554 1555 1556 1557 1558 1559 155A

44 2E 1B 48 1B 46 END

71

PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

START: 1000 MOV CL,59H C6 C1 59

 1003 MOV SI,1500H C7 C6 00 15

 1007 MOV AL,05 C6 C0 05
 100A OUT (CONTL)D0,AL E6 D0

 100C IN AL,(STAT)C0 E4 C0
 100E AND AL,20H 80 E0 20
 1011 CMP AL,20H 80 F8 20

 1014 JNZ ERR 75 3B
PROCE E D: 1016

 1016 MOV AL,[SI] 8A 04
 1018 CALL PRINT ; E8 0B 00
 101B INC SI 46

 101C DEC CL FE C9
 101E JNZ PROCEED 75 F6

 1020 MOV AL,0AH C6 C0 6A
 1023 CALL PRINT E8 00 00

PRINT: 1026

 1026 MOV BL,AL 88 C3
 1028 CALL CHECK E8 12 00

STATUS: 102B
 102B MOV AL,BL 88 D8
 102D OUT (DATA)C8,AL E6 C8

 102F MOV AL,01 C6 C0 01
 1032 OUT (CONTL)D0,AL E6 D0

 1034 NOP 90
 1035 NOP 90
 1036 NOP 90

 1037 MOV AL,05H C6 C6 05
 103A OUT (CONTL)D0,AL E6 D0

 103C RET C3

CHE C K: 103D

 103D IN AL,(STAT)C0 E4 C0

 103F AND AL,20H 80 E0 20
 1042 JZ CHECK 74 F9
 1044 IN AL,(STAT)C0 E4 C0

 1046 AND AL,80H 80 E0 80
 1049 CMP AL,80H 80 F8 80

 104C JNZ STATUS 75 DD
 104E JMP CHECK E9 EC FF

ERR: 1051
 1051 INT 2 CD 02

RESULT:

Thus the given message was printed in the printer using 8086 Microprocessor kit and

VBMB – 005.

72

VIVA QUES TIONS AND ANSWERS

1. Which interrupt subroutine is used to return printer status?

We use the INT (interrupt) instruction to call system routines; on completion, an interrupt routine

executes an IRET (interrupt return) ... to the printer; Function 1: init ializes a printer port; Function 2:

gets printer status

2. Explain ROL instruction

 Rotate accumulator left

3. Explain Printer Port.

 Printer port. A printer port is a female connector, or port, on the back of a computer that allows it to

interact with a printer. These ports enable users to send documents and pictures to a printer.

4. What is meant by Return Instruction?

 The Return instruction is used to return to the Main Program from a Subroutine Program or Interrupt

Program. The Return instruction can be Conditional or Unconditional

5. Differentiate CMP and S UB Instructions.

 The main difference between cmp and sub is that cmp does not store the result of the subtract operation; it
performs subtraction only to set the status flags.

73

13. SERIAL INTERFACE AND PARALLEL INTERFACE

13a) SERIAL INTERFACE

AIM:

To write a program to send byte value from one microprocessor kit to other kit in serial

method by using 8251.

PROCEDURE:

1. Take two no of 8086 microprocessor kits.

2. Enter the Transmit program in Transmitter kit.

3. Enter the receive program in receiver kit.

4. Interface the two kits with 9-9 serial cable in the serial port of the microprocessor kits.

5. (LCD kit means pc-pc cable; LED kit means kit-kit cable)

6. Enter the Baud rate in Transmitter and the receiver kit

7. Enter the data in Transmitter kit use the memory location 1500.

8. Execute the receiver kit.

9. Execute the Transmitter kit.

10. Result will be available in receiver kit memory location 1500.

PROGRAM: TRANSMITTER SECTION:

 Labe l Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV SI,1500H C7,C6,00,15 : MOVE 1500 to SI register

 1004 MOV AL,36H C6,C0,36 : MOV 36, to AL register

 1007 OUT 16H,AL E6,16

 1009 MOV AL,40H C6,C0,40 : MOVE 40 to AI register

 100C OUT 10H,AL E6,16 : MOV 01 to AL

 100E MOV AL,01H C6,C0,01

 1011 OUT 10H,AL E6,10

 RELOAD 1013 MOV CL,05H C6,C1,05 : MOV 05, to CL register

 CHECK 1016 IN AL,0AH E4,04

 1018 AND AL,04H 80,E0,04

 101B JZ CHECK 74,79 :JUMP Check

 101D MOV AL,[SI] 8A,04 :MOV SI to AL

 101F OUT 08H,AL E6,08

 1021 INC SI 46

 1022 CMP AL,3FH 80,F8,8F

 1025 JNZ RELOAD 75,F0 : JUMP on No – zero reload

 1027 DEC CL FE,C9

 1029 JNZ CHECK 75,EB :JUMP Check

 102B INT 02 CD,02 :INT the 02

 74

Transmitter

 Address Input

1500 01

1501 02

1502 03

1503 04

1504 05

Receiver

Address Output

1500 01

1501 02

1502 03

1503 04

1504 05

75

RECEIVER SECTION:

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV SI,1500H C7,C6,00,15 : MOVE 1500 to SI register

 1004 MOV AL,36H C6,C0,36

 1007 OUT 16H,AL E6,16 : MOV AL to 16H

 1009 MOV AL,40H C6,C0,40

 100C OUT 10H,AL E6,16

 100E MOV AL,01H C6,C0,01 : MOVE 01 to AI register

 1011 OUT 10H,AL E6,10

RELOAD 1013 MOV CL,05H C6,C1,05 : MOV 05, to CL register

CHECK 1016 IN AL,0AH E4,04

 1018 AND AL,02H 80,E0,02 :AND the Alto 02

 101B JZ CHECK 74,79 :JUMP the Check

 101D IN AL,08 E4,08

 101F MOV [SI],AL 88,04

 1021 INC SI 46 :Increment the SI

 1022 CMP AL,3FH 80,F8,8F

 1025 JNZ RELOAD 75,EC : JUMP reload

 1027 DEC CL FE,C9 :Decrement CL

 1029 JNZ CHECK 75,EB :JUMP Check

 102B INT 02 CD,02

 102D INT CD,02

RESULT:

Thus the program to send byte value from one microprocessor kit to other kit in

serial method by using 8251has been successfully verified.

76

VIVA QUES TIONS AND ANSWERS

1. What is baud rate?
 The baud rate is the rate at which the serial data are transmitted. Baud rate is defined as l /(The

time for a bit cell). In some systems one bit cell has one data bit, then the baud rate and bits/sec are

same.

2. What is USART?
 The device which can be programmed to perform Synchronous or Asynchronous serial

communication is called USART (Universal Synchronous Asynchronous Receiver Transmitter).

The INTEL 8251A is an example of USART.

3. What are the functions performed by INTEL 8251A?
 The INTEL 825lA is used for converting parallel data to serial or vice versa. The data transmission

or reception can be either asynchronously or synchronously. The 8251A can be used to interface

MODEM and establish serial communication through MODEM over telephone lines.

4. What is an Interrupt?
 Interrupt is a signal send by an external device to the processor so as to request the processor to

perform a particular task or work.

5. What are the control words of 8251A and what are its functions?

 The control words of 8251A are Mode word and Command word.
 The mode word informs 8251 about the baud rate, character length, parity and stop bits. The

command word can be send to enable the data transmission and reception.

6. What are the information that can be obtained from the status word of 8251?

 The status word can be read by the CPU to check the readiness of the transmitter or receiver and to
check the character synchronization in synchronous reception. It also provides information
regarding various errors in the data received. The various error conditions that can be checked from

the status word are parity error, overrun error and framing error.

77

13b). PARALLEL COMMUNICATION BETWEEN TWO 8086

MICROPROCESSORS KITS
AIM:

To write a program to send data from one microprocessor kit to other kit in

parallel method by using mode1 and mode2 of 8255.

PROCEDURE:

1. Take two 8086 microprocessor kits.

2. Enter the transmitter program in transmitter kit.

3. Enter the receiver program in receiver kit.

4. Interface the two kits with 26-core cable on PPI-1.

5. Execute the receiver kit.

6. Execute the transmitter kit.

7. Go and see the memory location 1200 in receiver your getting 8 same data‟s.

8. Data is available in transmitter kit the memory location is 100f.

9. We will change the data & execute the following procedure & get the result in receiver kit.

PROGRAM: TRANSMITTER PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV AL,82H C7,C0,82 : MOVE 82 to AL register

 1003 OUT 26H,AL E6,26

 1005 MOV AL,3FH C6,C0,3F : MOV 3F to AL register

 1008 OUT 20H,AL E6,20

LOOP 100A IN AL,22H E4,22 : MOVE 22H to AI register

 100C SUB AL,3FH 80,E8,3F

 100F JNZ LOOP 75 F9 :JUMP LOOP

 1011 MOV AL,24H C6,C0,24

 1014 OUT 20H,AL E6,20

 1016 CALL DELAY E8,02,00 :Call delay

 1019 INT 02 C0,02

DEL AY 101B MOV BL,05H C6,C3,FF

LION 101E MOV DL,0FFH C6,C2,FF

LOOP2 1021 DEC DL FF,CA :Decrement CL

 1023 JNZ LOOP2 75,F9 :JUMP Loop2

 1025 DEC BL FE,CB

 1027 JNZ LION 75,F4 :Jump on no zero to lion

 1029 RET C3

78
 7

Receiver

 Address Output

1200 24

1201 24

1202 24

1203 24

1204 24

1205 24

1206 24

1207 24

79

RECEIVER PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 MOV AL,90H C7,C0,90 : MOVE 90 to AL register

 1003 OUT 26H,AL E6,26 : MOV 20 to AL register

CHE CK 1005 IN Al,20H E4,20

 1007 SUB AL,3FH 80,E8,3F : MOVE 3FH to AI register

 100A JNZ CHECK 75F9

 100C MOV AL,3FH C6,C0,3F

 100F OUT 22H,AL E6,22

 1011 MOV Cl, 08 C6,C1,08 : MOVE 08H to AI register

 1014 CALL DELAY E8,12,00

 1017 MOV SI, 1200 C7,C8,00,12

LOOP1 101B IN AL,20H E4,20

 101D MOV [SI], AL 88,04

 100F CALL DELAY E8,07,00 :Call delay

 1022 INC SI 46

 1023 DEC CL FE,C9

 1025 JNZ LOOP1 75,F4

 1027 INT 02 CD,02

DEL AY 1029 MOV BL, 05H C6,C3,05

LION 102C MOV DL, 0FFH C6,C2,FF

LOOP2 102F DEC DL FE,CA :Decrement CL

 1031 JNZ LOOP2 75,FC ;JUMP LOOP2

 1033 DEC BL FE,CB :Decrement BL

 1035 JNZ LION 75,F5 :JUMP lion

 1037 RET C3

 1038 RET C3

RESULT;

Thus the program to sent data in parallel method from one microprocessor kit to another

using 8255 has been verified successfully.

80

VIVA QUES TIONS AND ANSWERS

1. Give some examples of port devices used in 8085 microprocessor based system?
 The various INTEL I/O port devices used in 8085 microprocessor based system are 8212, 8155, 8156,

8255, 8355 and 8755.

2. Write a short note on INTEL 8255?
 The INTEL 8255 is a I/O port device consisting of 3 numbers of 8 –bit parallel I/O ports. The ports can be

programmed to function either as a input port or as a output port in different operating modes. It requires
4 internal addresses and has one logic LOW chip select pin.

3. What is the drawback in memory mapped I/0?
 When I/O devices are memory mapped, some of the addresses are allotted to I/O devices and so the full

address space cannot be used for addressing memory (i.e., physical memory address space will be
reduced). Hence memory mapping is useful only for small systems, where the memory requirement is
less.

4. How DMA is initiated?
 When the I/O device needs a DMA transfer, it will send a DMA request signal to DMA controller. The

DMA controller in turn sends a HOLD request to the processor. When the processor receives a HOLD
request, it will drive its tri-stated pins to high impedance state at the end of current instruction execution
and send an acknowledge signal to DMA controller. Now the DMA controller will perform DMA
transfer.

5. What is processor cycle (Machine cycle)?
 The processor cycle or machine cycle is the basic operation performed by the processor. To execute an

instruction, the processor will run one or more machine cycles in a particular order.

6. What is Instruction cycle?
 The sequence of operations that a processor has to carry out while executing the instruction is called

Instruction cycle. Each instruction cycle of a processor indium consists of a number of machine cycles.

81

14. A/D AND D/A INTERFACE AND WAVEFORM GENERATION

14a) A/D INTERFACE WITH 8086

AIM:-

To write an assembly language program for interfacing of ADC with 8086.

ALGORITHM:-

(ii) Start the program

(iii) Select channel 0 (CH – 0)

(iv) Make ALE low (ALE = 10)

(v) Make ALE high (ALE = 18)

(vi) Male ALE low (ALE = 10)

(vii) Stop the program

PROCEDURE:

(i) Place jumper J2 in C position

(ii) Place jumper J5 in A position

(iii) Enter and execute the program

(iv) Vary the analog input (using trim pot) and view the corresponding digital

value in LED display,

82

FLOW CHART:

 START

Select channel OC (HO)

Move ALE low (ALE = 10)

Move ALE high (ALE = 18)

Move ALE low (ALE = 10)

STOP

83

PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

 1000 M OV AL, 10 C6 C0 10 ; Channel selection

 1003 OUT C8, AL E6 C8 ; ALE low

 1005 M OV AL, 18 C6 C0 18 ; ALE high

 1008 OUT C8, AL E6 C8

 100A M OV AL,10 C6 C0 10 ; ALE low

 100D OUT C8,AL E6 C8

 100F HLT F4 ; Stop

Jumper Details:-

 From switch CH3

B

B

Software A CH0 A

SOC

CH6 C ALE C
From latch

Box

SOC1

From trimpot

J2 [SOC Jumper Selection for CHO – CH7] J5 [Provision to correct the trimpot to

 any of mentioned channel]

RESULT:

Thus the assembly language program for performing the interfacing of ADC with 8086 has

been done verified.

84

14b. INTERFACING OF DAC WITH 8086

AIM:-

To write an assembly language program to generate square, triangular and saw tooth and waveform

by interfacing of DAC with 8086.

ALOGRITHM:

(a) Square Wave:-

 Initially the output value is predefined high value and after some time, the delayed output

value becomes lower and stays in that position for some time delay. 


 Initialize the accumulator and display it. 


 Using delay program, the output is displayed from „00‟ value. 


 Increment the value up to „FF‟ and display it for high value. 


 Using repeat instruction the square waveform is obtained.

(c) Saw tooth Waveform:-

 Initialize the accumulator to„00‟ values. 


 Display this value in C0 


 Increment the accumulator up to „FF‟


 Suddenly it is sent to 00 and repeats the process. 


(d) Triangular Waveform:-

 Initialize the accumulator to„00‟


 Out the results in „C8‟


 Increment the accumulator up to the value of FF and display it. 


 Decrement the accumulator to„00‟ and then display it. 


 Repeat the procedure for continuous waveform. 

85

(a) Square Waveform:-

Start

Initialize AL as „00‟

Display AL value

Make some delay

Move FF to AL

Display the AL value

Make some delay

86

(b) Saw tooth Waveform:-

Start

Load AL with corresponding digital data

Sent it to input of DAC

Increment AL

Compare with FF

Yes If
Zero

exist

No

87

(c) Triangular Waveform:-

Start

Initialize memory with digital data (00)

Send it to input of DAC

Increment data

Computer with FF

Yes

If

Carry

No

Move FF to AL

Display AL value

Decrement AL value

Compute with „00‟

No If

Zero

Yes

88

(a) To generate square waveform

PROGRAM:

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

L OOP2 : 1000 MOV AL, 00 C6 C0 00 ; Set Logic 0 level

 1003 OUT C8, AL E6 C8

 1005 CALL Delay E8 0B 00 ;Generate timing delay

 1008 MOV AL,0FF C6 C0 FF ;Set logic 1 level

 100B OUT C8, AL E6 C8

 100D CALL Delay E8 03 00 ; Generate timing delay

 1010 JMP LOOP2 E9 ED FF :Repeat to generates Square Wave

De la y: 1013 MOV CX, 05FF C7 C1 FF 05 :Delay Program

LOOP3: 1017 LOOP LOOP3 E2 FE

 1019 RET C3

(b) To generate saw tooth wave

PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

L OOP2 : 1000 MOV AL, 00 C6 C0 00 ; Set logic 0 level

LOOP1: 1003 OUT C0, AL E6 C0

 1005 INC AL FE C0 ;Increment Logic0 toLogic1

 1007 JNZ LOOP1 75 FA ;If ZF=0, jump to next

 1009 JMP LOOP2 E9 F4 FF ;Repeat

89

(c) To generate triangular waveform

PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

L OOP3 : 1000 MOV BL, 00 C6 C3 00 ;Set logic 0

LOOP1: 1003 MOV AL, BL 88 D8 ;copy logic 0

 1005 OUT C8, AL E6 C8

 1007 INC BL FE C3 ; Increment logic0 to logic1

 1009 JNZ LOOP1: 75 F8 ; If ZF=0, jump to next

 100B MOV BL, 0FF C6 C3 FF Set logic 1

LOOP2: 100E MOV AL, BL 88 D8 ;copy logic 1

 1010 OUT C8, AL E6 C8

 1012 DEC BL FE CB ; Decrement logic0 tologic1

 1014 JNZ LOOP2 75 F8 ; If ZF=0, jump to next

 1016 JMP LOOP3 E9 E7 FF ;Repeat

RESULT:

Thus an assembly language program to generate square, triangular and saw tooth waveform was

done using DAC Interface and 8086 microprocessor kit.

90

VIVA QUES TIONS AND ANSWERS

1. What are the internal devices of a typical DAC?
The internal devices of a DAC are R/2R resistive network, an internal latch and current to voltage
converting amplifier.

2. What is settling or conversion time in DAC?
The time taken by the DAC to convert a given digital data to corresponding analog signal is called
conversion time.

3. What are the different types of ADC?
The different types of ADC are successive approximation ADC, counter type ADC flash type ADC,
integrator converters and voltage- to-frequency converters.

4. Define stack
Stack is a sequence of RAM memory locations defined by the programmer.

5. What is program counter? How is it useful in program execution?
The program counter keeps track of program execution. To execute a program the starting address of the
program is loaded in program counter. The PC sends out an address to fetch a byte of instruction from
memory and increments its content automatically.

6. How the microprocessor is synchronized with peripherals?
The timing and control unit synchronizes all the microprocessor operations with clock and generates
control signals necessary for communication between the microprocessor and peripherals.

91

15. BASIC ARITHMETIC AND LOGIAL OPERATIONS USING

8051

A. 8 BIT ADDITION

AIM:

To write a program to add two 8-bit numbers using 8051 microcontroller.

ALGORITHM:

1. Clear Program Status Word.

2. Select Register bank by giving proper values to RS1 & RS0 of PSW.

3. Load accumulator A with any desired 8-bit data.

4. Load the register R 0 with the second 8- bit data.

5. Add these two 8-bit numbers.

6. Store the result.

7. Stop the program.

92

FLOW CHART:

Start

Clear PSW

Select Register

Load A and R0 with 8 – bit data‟s

ADD A & R0

Store the sum

Stop

93

PROGRAM:

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART : 4100 CLR C C3 Clear CY Flag

 4101 MOV A,#0A 74 0A Get the data1 in Accumulator

 4103 ADDC A,#10 34 10 Add the data1 with data 2

 4105 MOV DPTR,#4500 90 45 00 Initialize the memory location

 4108 MOVX @DPTR,A F0 Store the result in memory location

L1 4109 SJMP L1 80 FE Stop the program

Address Output

4500 1A(LSB)

4501 00(MSB)

RESULT:

Thus the 8051 Assembly Language Program for addition of two 8 bit numbers was

executed.

94

FLOW CHART:

Start

Clear Carry Flag

Get 1‟st Operation in ACCR

Subtract the 2‟nd operand from

ACCR

IS
CF=1

Increment the Borrow Register

Store Result in Memory

Stop

95

15B. 8 BIT SUBTRACTION

AIM:

To perform subtraction of two 8 bit data and store the result in memory.

ALGORITHM:

1. Clear the carry flag.

2. Initialize the register for borrow.

3. Get the first operand into the accumulator.

4. Subtract the second operand from the accumulator.

5. If a borrow results increment the carry register.

6. Store the result in memory.

PROGRAM:

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART : 4100 CLR C C3 Clear CY Flag

 4101 MOV A,#0A 74 0A Get the data1 in Accumulator

 4103 SUBB A,#05 94 05 Subtract data2 from data1

 4105 MOV DPTR,#4500 90 45 00 Initialize memory location

 4108 MOVX @DPTR,A F0 Store the difference in memory location

L1 4109 SJMP L1 80 FE Stop the program

Address Output

4500 05

RESULT:

Thus the 8051 Assembly Language Program for subtraction of two 8 bit numbers was

executed.

96

FLOW CHART:

Start

Get Multiplier in ACCR

Get Multiplicand in B Register

Multiply A with B

Store Result in Memory

Stop

97

15 C. 8 BIT MULTIPLICATION

AIM:

To perform multiplication of two 8 bit data and store the result in memory.

ALGORITHM:

1. Get the multiplier in the accumulator.

2. Get the multiplicand in the B register.

3. Multiply A with B.

Store the product in memory
PROGRAM:

Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART : 4100 MOV A,#05 74 05 Store data1 in accumulator

 4102 MOV B,#03 75 F0 03 Store data2 in B register

 4105 MUL AB A4 Multiply both

 4106 MOV DPTR,#4500 90 45 00 Initialize memory location

 4109 MOVX @DPTR,A F0 Store lower order result

 410A INC DPTR A3 Go to next memory location

 410B MOV A,B E5 F0 Store higher order result

 410D MOVX @DPTR,A F0

L1 410E SJMP L1 80 FE Stop the program

Address Output

4500 0F(LSB)

4501 00(MSB)

RESULT:

Thus the 8051Assembly Language Program for multiplication of two 8 bit numbers was

executed.

98

FLOW CHART:

Start

Get Dividend in ACCR

Get Divisor in B Register

Divide A by B

Store Quotient & Remainder in

Memory

Stop

99

15 D. 8 BIT DIVISION

AIM:

To perform division of two 8 bit data and store the result in memory.

ALGORITHM:

1. Get the Dividend in the accumulator.

2. Get the Divisor in the B register.

3. Divide A by B.

Store the Quotient and Remainder in memory

PROGRAM:

 Labe l Address Mnemonics Hex code Comments

 Opcode Operand

ST ART : 4100 MOV A,#15 74 15 Store data1 in accumulator

 4102 MOV B,#03 75 F0 03 Store data2 in B register

 4105 DIV AB 84 Divide

 4106 MOV DPTR,#4500 90 45 00 Initialize memory location

 4109 MOVX @DPTR,A F0 Store remainder

 410A INC DPTR A3 Go to next memory location

 410B MOV A,B E5 F0 Store quotient

 410D MOVX @DPTR,A F0

 L1 410E SJMP L1 80 FE Stop the program

 Input Output

 Memory Location Data Memory Location Data

 4500 (dividend) 0F 4502 (remainder) 05

 4501 (divisor) 03 4503 (quotient) 00

RESULT:

Thus the 8051 8051Assembly Language Program for division of two 8 bit numbers was

executed.

100

FLOW CHART:

START

Get the first data

Get the second data

Logically AND first data with

second data

Initialize the memory

Move the resultant value into memory

STOP

101

15 D. MASKING BITS IN AN 8 – BIT NUMBER

AIM:

To write an assembly language program to mask bits o and 7 of an 8 – bit

number and store the result in memory using 8051 microcontroller.

APPARATUS REQUIRED:

8051 microcontroller kit

ALGORITHM:

Masking bits in a 8 bit number

 Start the process


 Get the two data values


 Get the second data


 Logically „AND‟ the two data values. 


 Initialize the memory value and store the result in memory. 


 Start the process

PROGRAM:

Labe l Address Mnemonics Hex code Comments

 Opc ode Operand

ST ART 4100 M OV A,#87 74 87

 4102 ANL A,#7E 54 7E

 4104 M OV DPTR,#4500 90 45 00

 4107 MOVX @DPTR,A F0

L1 4108 SJMP L1 80 FE

Output

Memory Location Data

4500 06

RESULT:

Thus the 8051assembly language program for masking bits was executed and verified.

102

VIVA QUESTIONS AND ANSWERS

1. What is DPTR?

 DPTR is a data pointer register in 8051 , which is of 2 bytes(16bits)....DPH,DPL

2. What is the difference between Microprocessor and Microcontroller?

 Key difference in both of them is presence of external peripheral, where microcontrollers have RAM,

ROM, EEPROM embedded in it while we have to use external circuits in case of microprocessors. ... As all the

peripheral o f microcontroller are on single chip it is compact while microprocessor is bulky.

3.What is the use of stack pointer?

 Stack pointer points the top of stack.

4. What is the use of SJMP?

 SJMP jumps unconditionally to the address specified reladdr. Reladdr must be within -128 or

+127 bytes of the instruction that follows the SJMP instruction.

5. What is meant by Register Bank?

The 8051 microcontroller has a total of 128 bytes of RAM.

We will discuss about the allocation of these 128 bytes of RAM and examine their usage as stack and register.

... These 32 bytes are divided into four register banks in which each bank has 8 reg isters, R0–R7.

 6.What is the use of Accumulator?

 An accumulator is a register for short-term, intermediate storage of arithmetic and logic data in a computer's

CPU (central processing unit).

 7. What is the use of Interrupt?

An interrupt is a condition that causes the microprocessor to temporarily work on a different task, and

then later return to its previous task. Interrupts can be internal or external.

 8. What is meant by Port?

 The port is a buffered I/O, which is used to hold the data transmitted from the microprocessor to I/O device or

vice-versa.

103

a) 1‟s and 2‟s complement

START

Get the input value

Get the complement

Initialize the data pointer value

Move the data to data pointer

Increment the data value and

data point memory

Move the value to the memory

STOP

104

16. SQUARE AND CUBE PROGRAM, FIND 2‟S COMPLIMENT OF A

NUMBER

AIM:-

To write an assembly language to perform arithmetic, logical and bit manipulation instruction using

8051.

ALOGRITHM:

a) 1‟s and 2‟s complement

 Get the value
 Get the complement value of data.
 Initialize the data pointer value as memory. 
 Move the complemented value to memory of data pointer. 
 Increment the value and memory. 
 Store the result in memory. 
 Stop the process.

a) 1‟s and 2‟s complement

PROGRAM:

Label Address Mnemonics Hex code Comments

 Opcode Operand

 4100 MOV A, #02 74, 02 Get the initial value

 4102 CPL A F4 Complement the value

 4103 MOV DPTR, # 4200 90, 42, 00 Initialize the memory

 4106 MOVX @ DPTR, A F0 Move the data to memory

 4107 INC A 04 Increment Accumulator

 4108 INC DPTR A3 Increment the memory

 4109 MOVX @ DPTR, A F0 Move the value to memory

ECE: 410A SJMP ECE 80, FE Continue the process.

105

1‟s and 2‟s complement

 Output

Memory Location Data

4200 FD (1‟s complement

4201 FE(2‟S Complement)

Square of a number

Input Output

Memory Location Data Memory Location Data

4200 89 4201 51

 4202 49

106

b) SQUARE PROGRAM FOR 8051

$MOD51

ORG 4100H

MOV DPTR,#4200H

MOVX A,@DPTR

MOV B,A

MUL AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

L:SJMP L

C). CUBE PROGRAM FOR 8051

$MOD51
ORG 4100H

MOV DPTR,#4200H
MOVX A,@DPTR

MOV B,A
MOV R7,A
MUL AB

MOV R0,A
MOV R1,B

MOV A,R7
ANL A,#0FH
MOV B,A

MOV A,R0
MUL AB

MOV R2,A
MOV R3,B
MOV A,R1

MOV B,A
MOV A,R7

ANL A,#0FH
MUL AB
MOV R4,A

MOV R5,B
MOV A,R3

MOV B,R4
ADD A,B
MOV R3,A

107

MOV A,R0
MOV B,A

MOV A,R7
ANL A,#0F0H

SWAP A
MUL AB
MOV R4,A

MOV R6,B
MOV A,R7

ANL A,#0F0H
SWAP A
MOV B,R1

MUL AB
MOV R0,A

MOV R1,B
MOV A,R6

MOV B,R0
ADD A,B
MOV R0,A

MOV R7,A
MOV A,R4

SWAP A
ANL A,#0F0H

MOV R6,A
MOV A,R0
SWAP A

ANL A,#0F0H
MOV R0,A

MOV A,R4
SWAP A
ANL A,#0FH

MOV R4,A
MOV B,R0

ADD A,B
MOV R4,A
MOV A,R1

SWAP A
MOV B,A
MOV A,R7
SWAP A
ANL A,#0FH

ADD A,B
MOV R0,A

MOV A,R6
MOV B,R2
ADD A,B

MOV R6,A
MOV A,R3

MOV B,R4
ADDC A,B
MOV R3,A

108

MOV A,R0
MOV B,R5

ADDC A,B
MOV R0,A

MOV DPTR,#4500H
MOV A,R6
MOVX @DPTR,A

INC DPTR
MOV A,R3

MOVX @DPTR,A
INC DPTR
MOV A,R0

MOVX @DPTR,A
L:SJMP L

Cube of a number

Input Output

Memory Location Data Memory Location Data

4200 89 4500 56

 4501 3C

 4502 27

RESULT:

Thus the assembly language program to find 2‟s complement, Square and cube of a number

was executed and verified successfully using 8051 microcontroller

109

VIVA QUES TIONS AND ANSWERS

1. Explain ANL Instruction.

The ANL instruction performs a bitwise logical AND operation between the specified byte or bit operands and

stores the result in the destination operand.

2. Explain S wap Instruction.

Swap instruction swaps the contents of two registers

3. What is meant by CPL instruction?

 CPL performs complement operation.It converts 0‟s to 1‟s and vice versa.

4. What is the difference between SJMP and LJMP?

 SJMP, LJMP, AJMP. Short jump, relative address is 8 bit it support 127 location fo rward, Long jump range is 64

kb, Absolute jump to anywhere ...

5. What is the use of MOVX instruction?

 The MOVX instruction transfers data between the accumulator and external data memory. External memory may

be addressed via 16-b its in the DPTR register or v ia 8-b its in the R0 or R1 registers. When using 8-bit addressing,

Port 2 must contain the high-order byte of the address

6. What is meant by watch dog timer?
 A watchdog timer (WDT) is a hardware timer that automatically generates a system reset if the main program

neglects to periodically service it. It is often used to automatically reset an embedded device that hangs because

of a software or hardware fault.

110

17. UNPACKED BCD TO ASCII

AIM:

To convert BCD number into ASCII by using 8051 micro controller

RESOURCES REQUIERED:

 8051 microcontroller kit

 Keyboard

 Power supply

For example

111

Input Output

Memory Location Data Memory Location Data

4200 89 4201 39

 4202 38

Unpacked bcd to ascii conversion program for 8051

$MOD51

ORG 4100H

MOV DPTR,#4200H

MOVX A,@DPTR

MOV B,A

ANL A,#0FH

ADD A,#30H

MOV R0,A

MOV A,B

SWAP A

ANL A,#0FH

ADD A,#30H

MOV R1,A

INC DPTR

MOV A,R0

MOVX @DPTR,A

INC DPTR

MOV A,R1

MOVX @DPTR,A

L:SJMP L

RESULT:

Thus the assembly language program to convert unpacked BCD to ASCII was executed and

verified successfully using 8051 microcontroller

112

VIVA QUES TIONS AND ANSWERES

1. What is meant by „packed BCD‟ number?

 Packed BCD is the first and second number is represented as the first 4 bits and last 4 bits in a byte. The number

75 in packed BCD would be 01110101. Unpacked BCD is each number is represented by its own byte. The number

75 in unpacked BCD would be 00000111 and 00000101

2. Differentiate between ANL and ORL instruction.

 The different ways of pointing out an operand's location (source and destination) are.. For the ANL (AND) and ORL

(oR) bit oriented operations, the source bit may use it.

3. What does SWAP A instruction do?

The SWAP instruction exchanges the low-order and high-order nibbles within the accumulator. No flags are affected by

this instruction. See Also: XCH, XCHD ...

4. Differentiate between Packed and Unpacked BCD numbers .

 Packed BCD is the first and second number are represented as the first 4 bits and last 4 bits in a byte. The number

75 in packed BCD would be 01110101. Unpacked BCD is each number is represented by its own byte. The number

75 in unpacked BCD would be 00000111 and 00000101

5. What is meant by ASCII code?

 ASCII stands for American Standard Code for Information Interchange. Below is the ASCII character table,

including descriptions of the first 32 characters .

113

